Harima Chemicals Group, Inc.


R&D Products

Advanced Materials

We are actively developing new functional materials. For this purpose, we are pursuing research and development aimed at the creation of new products and businesses by combining the core technologies that we have so far developed. An important role is also played by the corporate functions of the technical development departments in each business division and by research and development that take place outside the scope of our core business. Based on the constantly shifting market forces and needs, our research and development targets the fields of functional resins, joining technology, emulsification technology, pine chemicals, and analysis & evaluation technology.

UV-Curable nanoparticle dispersions
Image : Dispersants for ultra-fine particles

In recent years, demands for high performance and multi-functional coating agents are more and more increasing. We developed nanoparticle dispersions using synthetic technologies and our dispersing technologies. Our UV-curable nanoparticle dispersions can be mixed with various materials because of their high solubility and high transparency. Our dispersions can give various functions of the nanoparticles by mixing with various materials.

Hydrophilic surface coating agents
Image : Hydrophilic surface coating agents

We have developed hydrophilic surface coating agents that combine our coating resin technology and dispersion technology to produce organic/inorganic nanocomposite coating agents. Special functions that can be expected from hydrophilic surfaces including anti-fogging properties, contamination resistance and antistatic properties. These coating agents bond well to metals, plastics and even glass.

Aluminum brazing materials
Image : Aluminum brazing materials

Aluminum brazing materials are used in the production of heat exchangers for automotive air conditioners that are more compact and have higher performance. We have developed a new concept in brazing materials by concentrating on the technology of pre-coating methods to implement low-cost aluminum brazing with higher quality.

Functional resins for electronic materials
Image : Functional resins for electronic materials

In the manufacturing process of circuit formation of electronic devices, which have undergone drastic technological revolutions of recent years, various resin technologies are employed. At Harima Chemicals, Inc. we have made further progress in traditional polymer synthesis technologies, and we have researched and developed synthesis methods for resins with new functions such as photosensitivity, photo amplification, water repellency and heat resistance.

Granular talc
Image : Granular talc

Talc is generally blended into thermoplastic resins in order to improve their mechanical properties. Talc powder itself is a material with low bulk density. It is therefore liable to form dust that degrades the working environment and reduces the efficiency with which it can be mixed in kneading machines. We have developed a granular form of talc powder that uses rosin modified resin as a binder to form talc granules from particles of talc powder with an average particle size of 1.8 µm.


The Tsukuba Research Laboratory is situated in the heart of the Tsukuba Science City, and they are working on the development of advanced materials.
We are making efforts to develop revolutionary new materials and technologies by exploiting our leading-edge technology and our location in the Tsukuba Science City.

Metallic pastes for fine pattern formation: NPS series
Nanoparticles that have been protected with a dispersant are stable at room temperature and exhibit behavior very similar to liquids.
Image : Metallic pastes for fine pattern formation: NPS series
NanoPaste and on-demand inkjet printing facilitate the growth of printed electronics.
Image : Metallic pastes for fine pattern formation: NPS series
Ultra-fine patterns can be formed on various kinds of substrates that exactly replicate patterns made by CAD data.

Technical reports
(1) Nobuto Terada:The Society of Chemical Engineers, Japan, 42th Annual Meeting
(2) Masayuki Ueda : Inorganic Polymer Closed Seminar 2011

Conductive pastes
Thermosetting Conductive Paste: CP Series
Silver Paste with High Thermal Conductivity

Silver Paste NH-3000D achieves a higher level of thermal conductivity than solder through the incorporation of Silver Nanoparticles. Application of the paste facilitates superb workability and is perfect for mounting items such as LED and power transistors packages.

Image : Silver Paste with High Thermal Conductivity
Image : Image of Thermal Conductivity
Copper paste for through-holes: CP-700

Copper through-holes can be formed simply by screen printing copper paste onto a pre-drilled substrate laminated with copper foil, which is then heat-cured. Compared with conventional plated through-holes, this process uses simpler manufacturing facilities, costs less, and suffers from none of the migration problems that can occur with silver through-holes.
The resulting through-holes provide stability, low resistance, and superior printing properties.

Image : Conductive silver paste as an alternative tin plated to electrode: ST-200
Conductive silver paste as an alternative tin plated to electrode: ST-200

When tin (Sn) plated components are bonded with ordinary silver paste, the bond strength and electrical resistance are liable to deteriorate due to a phenomenon called galvanic corrosion, which can easily occur at the Sn-Ag interface. As an alternative, our conductive silver paste (ST-200) improves the water resistance of the resin, thereby effectively preventing this galvanic corrosion and achieving reliable silver paste joins with low resistance. This paste can be supplied by screen printing, from a dispenser, or by transfer printing.

Technical report
(1) Katsuhisa Ohsako: Micro Joining Research Committee, 2006